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Executive Summary
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The 15t study of the QCD phase transition with chirally symmetric
lattice fermions and physical pion masses

The transition is a crossover with 7, = 155 (1) (8) MeV
- similar to previous results using staggered fermions

Anomalous U(1), symmetry is thoroughly broken up to
I~185MeV~12T,

The disconnected chiral susceptibility peak doubles when M_is
reduced from 200 to 135 MeV, in rough agreement with O(4) scaling

Demanding calculations enabled by cutting edge algorithms
(DSDR), software (CPS/BFM), and machines (LLNL BG/Q)



Outline

= the QCD finite-temperature transition

= domain wall fermions

= chiral susceptibilities and chiral symmetry
= chiral susceptibilities and U(1),

= cutoff effects
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The QCD Finite-T Transition

The spontaneous breaking of chiral symmetry
SU(2), x SU(2), =2 SU(2),
is a crucial aspect of the history and present state of our Universe

= studied intensely for over 30 years, experimentally and theoretically

= one outstanding puzzle: role of anomalous U(1), axial symmetry
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The QCD Finite-T Transition

u mq=0:

- U(1), thought to be clearly broken at T,
- 4 light d.o.f. (o, ), O(4)-class 2" order criticality

 Pisarski, Wilczek (1984):
if U(1), breaking at T, is mild, have 8 light d.o.f.
=2 NOT O(4)-class — SU(2), x SU(2)s/ U(2),?
- maybe even 15t order

> U(1), of fundamental importance and NOT understood
= m, physical:

« transition appears to be analytic crossover
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Recent literature - |

G. Cossu ef al. (2013) for JLQCD
Disconnected meson diagrams

Meson spatial correlators
vanish af temperatures above T, p=225(1~ 15 am=0.01

Related: Gap in the Dirac spectrum

Aoki, Fukaya, Taniguchi (2012)

Analytic calculatfion (Overlap) AT
Dirac spectrum p(1)~cA3 T = 0 = p=Na
Implies U(1), anomaly invisible Restored

credit: Guido Cossu, Lattice 2014
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Recent literature - |

Bazavov et al. (2012-13)
Domain wall, several volumes
Dirac spectrum, suscepfibilities
NOT restored

Ohno et al., Sharma et al. (2012-13) Exact c
Overlap on HISQ configurations

Dirac spectrum
NOT restored

Brandt et al. (2013)
Wilson improved fermions
Screening masses

NOT restored
credit: Guido Cossu, Lattice 2014
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Domain Wall Fermions

= chiral fermions expensive but essential

= staggered fermions:
- explicitly break U(1), and 5/6 of SU(2), x SU(2)x
« very costly continuum limit absolutely necessary

= domain wall fermions:

- three, degenerate pions and exact anomalous current conservation
at finite lattice spacing (for infinite L)

« near-continuum results expected for sufficiently large L,
- still need to control effects of finite a, V, and L,
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Domain Wall Fermions

= Wilson, w/ chiralities separated in 5" dimension

= LH and RH fields localized on domain walls, x,=0 and L, overlap in
bulk for finite L

= Want “L ~~" — expensive but manageable

Then there are two chiral zeromode solutions \IJS—L given by

UE(F, 2) = PPy (s, )us

where the transverse wavefunctions are given by

b1(5,5) = el

¢—(37ﬁ> = (_1)ns¢+(87ﬁ) :

4

Lawrence Livermore National Laboratory T

—




Domain Wall Fermions

= Substantial cost reductions:

« Dislocation Suppressing Determinant Ratios ~10X for m ~135 MeV
(DSDR)

» introduce ratio of Wilson fermions
with negative unphysical mass

0.025 (R

0.02
@—o Standard DWF L= 32
@—g Standard DWF LS =96

g 0015 $&—< DWF+DSDR L= 32 -

o suppress “dislocations” - low modes due to i
O(a) effects — without freezing topology 01|~

e achieve target m

os at reduced L 0005

T

0 TR NN T NI ST Y THo——o % T |
0.13 0.14 0.5 0.6 0.17 0.18 0.19 02 021 022 023 024

e Mobius Formulation TGN

» generalize Shamir formulation with overall scaling

factor additional 2X for m_~135 MeV
» improve sign function approximation

in low-mode, residual-xSB region

» achieve target m,, at further reduced L,

res
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Xl,disc and TX

= Optimal probe of ¥SB: disconnected chiral susceptibility

0 - 1 12 —1\2
Xl disc — ((M<¢w>l>disc — N[;SNT {<<TIMZ_ ) >_ <Ter > }

» clearly peaked at T,

- UV divergence logarithmic and suppressed by m?
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Xl,disc and Tx

40 — —
483 % 12 HISQ,ml —0. 05 ms,m7r — 161MeV —A—

163 x 8, my = 200MeV 4
T 243 x 8 my = 200MeV
323 x 8 m, = 200MeV
323 X 8 my = 135MeV
64 X 8 m, = 135MeV

0 L | L L n
120 130 140 150 160 170 180 190 200 210 220

T (MeV)
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Xl,disc and Tx

40 —

20

MS 2
Xl,disc. /T

10

483 % 12, HISQ, my = 0.05m., my — 161MeV —A—

n /é\

16 x 8, m; = 200MeV
243 x 8, my = 200MeV
323 x 8, my = 200MeV +—v—
323 x 8, my = 135MeV —6— 7]
643 x 8, m, = 135MeV

0 L | L | L |

120 130 140 150 160 170 180 190 200 210 220 230
T (MeV)

2. 643x8 results agree well w/in errors — f.v. effects are minor
(f.v. effects should decrease as T increases, higher stats needed but hard)
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Xl,disc and Tx
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3. peak height for M_= 135 MeV about 2x that for M, = 200 MeV

— agrees with

O(4) scaling, but not conclusive
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Xl,disc and Tx
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4. N#12, M =161 MeV HISQ looks like N=8, M_>200 MeV DWF,
but need continuum limits for serious comparison
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More Chiral Susceptibilities

= pseudo-/scalar, non-/singlet susceptibilities

 more sensitive

than condensate SU(2) L X SU(2) R

[ - T - -
9y 5 q- - 5: 99
A

« probe chiral and
U(1), symmetries )

* precision boost U(1 )A U(1 )A

from random Z,
wall source

) \)

- 7 . B
6:q;9 ~M:qyvq
- renormalized to SU(2) . x SU(2) g

MS simply using
Z

m%IVI_S
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Susceptibilities and

= Xa Ko, Xy T Ko

-  zero when chiral symmetry
is restored

X, ~ Xs always near-zero

X, ~ X, hear-zero for
T > 160 MeV

very little M_ dependence

no significant volume
dependence (not shown)

SU(2) xSU(2)

miqy,; 4~ ~0:4qq
T u(1), ' ' u(1),
8:9;9 ~—— n:qyq
SU(2) | x SU(2)
200 . —
o my ~ 200 MeV, ( ,kf MS) JT? —H—
my 2~ 200 MeV, (M — yMS) /72
150 |
my & 135 MeV, (M5 — yMS) /12 —6—
§ mx ~ 135 MeV, (x; MS _ \MS) /72
100
P
50
&
0 _63 ............. I'Z‘l ............ @ ............ E ......
130 140 150 160 170 180 190 200

T (MeV)
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Susceptibilities and U(1) , ”(;’j‘L

Ka~

9

Xo

near-zero when U(1),
is near-restored

near-zero for T > 185 MeV,
well above TX

little M. dependence

no significant volume
dependence (not shown)
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Axial symmetry breaking from Dirac spectra: DWF

120 | - :af_{a,)ng | calculalted from ’.-_’I-pt. corr. I-—I—- ;
o calculated from Dirac Eigenvalues —&—
100 | calculated from fits to p(h) —— 1
: ]
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almost the entire contribution
to the axial symmetry breaking
measure ¥, — Xs comes from
near-zero modes m*§ ()

for T=1.2T,

credit: Swagato Mukherjee, XQCD 2014
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Cutoff Effects

= Published results are all for N=8

= Calculation with N=12, N.=64, and one temperature T~TX underway
-- preliminary results are not yet available

= Zero-T spectrum results suggest cutoff effects of ~5%
but quantifying cutoff effects at finite T is necessary!

TABLE II. Results at 8 = 1.633 and T = 0 (in Scaling: 1.73 GeV (24%) — 2.28 GeV (323)
lattice units and MeV) from 50 configurations sep- (Chris Kelly)
arated by 10 time units. We use Mg to determine
the scale. Also listed are the experimental values. o3
1/a MeV Expt.(MeV) ol e e
m.  0.11824(49) 12953 135 } { { ] } f"‘/m“'““ o] 1w
mi  0.42301(51) 463.39 495 T mu/;hhh"’ 1 v {
me 1.5267(55) 1672.45 1672.45 059+ fn/mhhh fyfmy, mt, ]
T =+ 0.125 136.93 058 .
f7r 0.12640(25) 138.47 130.4 097

fk  0.14852(48) 162.70  156.1

Mres  0.002167(16) — - Ratios of dimensionless combinations of physical

quantities computed using 1/a = 1.73 and 2.28 GeV.
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The 15t study of the QCD phase transition with chirally symmetric
lattice fermions and physical pion masses

The transition is a crossover with 7, = 155 (1) (8) MeV
- similar to previous results using staggered fermions

Anomalous U(1), symmetry is thoroughly broken up to
I~185MeV~12T,

The disconnected chiral susceptibility peak doubles when M_is
reduced from 200 to 135 MeV, in rough agreement with O(4) scaling

Demanding calculations enabled by cutting edge algorithms
(DSDR), software (CPS/BFM), and machines (LLNL BG/Q)
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